Tetralogy of Fallot With Pulmonary Atresia

No Results

No Results

processing….

Because of the wide variability of pulmonary blood supply, diagnosis and surgical management of tetralogy of Fallot (TOF) with pulmonary atresia (PA) is more difficult than that of classic tetralogy of Fallot, [1] and therefore, it is worthy of separate consideration. 

Tetralogy of Fallot is composed of a malaligned ventricular septal defect (VSD), anterior shift of the aorta over the VSD (overriding aorta), obstruction of the right ventricular outflow tract, and right ventricular hypertrophy (see the following video). Pulmonary atresia with VSD is considered the extreme end of the anatomic spectrum of tetralogy of Fallot.

See also Tetralogy of Fallot, Tetralogy of Fallot With Pulmonary Stenosis, and Tetralogy of Fallot With Absent Pulmonary Valve.

Tetralogy of Fallot with pulmonary atresia accounts for about 2% of congenital heart disease. The Baltimore Washington Infant study reported an incidence of tetralogy of Fallot with pulmonary atresia of 0.07 case per 1000 live births. Tetralogy of Fallot with pulmonary atresia accounted for 20.3% of all forms of tetralogy of Fallot. [2]

There is no known race or sex predilection for tetralogy of Fallot with pulmonary atresia. This condition may become symptomatic at birth in most cases as the ductus arteriosus closes, although a delayed diagnosis may occur when additional sources of pulmonary blood flow besides the ductus arteriosus are present.

The lungs develop from the foregut and carry their nutrient supply from the paired dorsal aortae. The paired sixth aortic arches also give rise to branches that form an anastomosis with the pulmonary vascular tree at 27 days’ gestation. Over time, the branches from the descending thoracic arch become smaller, and the sixth aortic arch becomes larger.

The aorta and pulmonary arteries form from the distal bulbus cordis and the truncus arteriosus, which are positioned above the right ventricle. The bulbotruncal ridges separate the great arteries, and the aortic component posteriorly rotates. However, faulty rotation of the bulbus-truncus in tetralogy of Fallot (TOF) results in incomplete transfer of the aorta above the left ventricle. Malalignment of the infundibular septum to the trabecular septum is present, resulting in a malalignment ventricular septal defect (VSD).

Anterior displacement of the bulbotruncal region has been postulated to cause the infundibular stenosis. Another theory that has been suggested to cause tetralogy of Fallot is underdevelopment of the subpulmonic infundibulum that results in maldevelopment of the conal septum. Little or no evidence supports this hypothesis.

The anatomy of the pulmonary arteries and the source of pulmonary artery blood supply may widely vary in tetralogy of Fallot with pulmonary atresia (TOF-PA). [3] Persistence of descending thoracic branches accounts for the abnormal pulmonary arterial supply in this condition. Major aortopulmonary collateral arteries (MAPCAs) may anastomose at any site in the pulmonary vascular tree. Most frequently, the right and left pulmonary arteries are patent and maintain free communication with each other and are therefore termed confluent pulmonary arteries. The pulmonary arteries may also be hypoplastic and nonconfluent with no antegrade pulmonary blood flow present from the right ventricle to the pulmonary arteries. The ductus arteriosus is an important source of blood supply to the central branch pulmonary arteries—and when absent indicates the present of MAPCAs. [4]

Classification of pulmonary atresia with VSD depends on the predominant source of blood supply to the bronchopulmonary segments. These range from the native confluent, and possibly absent, central pulmonary arteries supplied solely by the ductus arteriosus to nonconfluent pulmonary arteries, with multiple major aortopulmonary collateral vessels supplying pulmonary blood flow.

Rare sources of pulmonary blood flow include an aortopulmonary window, a persistent fifth aortic arch, and coronary–to–pulmonary artery fistulae. Identification of the pulmonary arterial supply is essential in planning the type of surgical repair.

Many patients with tetralogy of Fallot with pulmonary atresia (TOF-PA) have associated syndromes and extracardiac malformations.

Conotruncal cardiac malformations associated with a chromosome arm 22q11 deletion have been incorporated under an acronym of CATCH22 (cardiac defect, abnormal face, thymic hypoplasia, cleft palate, hypocalcemia, microdeletion of band 22q11). Patients with tetralogy of Fallot with pulmonary atresia have a higher incidence of this syndrome than patients with classic tetralogy of Fallot. The prevalence of deletion 22q11 is 16% in tetralogy of Fallot with pulmonary atresia with confluent pulmonary arteries and 41% in patients with tetralogy of Fallot with pulmonary atresia and multiple aortopulmonary collateral arteries. [5] Surgical mortality has been reported to be greater among patients with tetralogy of Fallot with pulmonary atresia with a 22q11 deletion compared with patients with normal chromosomes, perhaps due to depressed immunologic status or other factors. [6]

Other syndromic associations include VATER syndrome (vertebral defects, anal atresia, tracheoesophageal fistula with esophageal atresia, and renal and radial anomalies); CHARGE syndrome (coloboma, heart disease, atresia choanae, retarded growth and retarded development and/or central nervous system [CNS] anomalies, genital hypoplasia, and ear anomalies and/or deafness); Alagille syndrome; cat’s eye syndrome; Cornelia de Lange syndrome; Klippel-Feil syndrome; and trisomy 21. [7]

Maternal diabetes mellitus; maternal phenylketonuria; and maternal ingestion of retinoic acid, trimethadione, serotonin reuptake inhibitors, or sex hormones increase the risk of conotruncal abnormalities. Infants of mothers with diabetes mellitus have a 20-fold higher risk of these anomalies than infants of mothers without diabetes mellitus.

The recurrence risk of siblings with tetralogy of Fallot is 3-4%. The recurrence risk increases further if syndromic variants are present.

Variable patterns of inheritance may be observed.

The prognosis of tetralogy of Fallot with pulmonary atresia (TOF-PA) depends on the specific anatomy and type of intervention. Survival before the advent of modern surgical techniques rarely occurred, with less than 5% of patients reaching age 25 years. [8, 9] Survival into late adulthood without surgical intervention has been reported. [10] Surgical morbidity and mortality and long-term survival have steadily improved into the current era, with most of these patients now surviving into adulthood. [11] In patients with operable pulmonary arteries, survival rates with satisfactory quality of life reach 90%.

Long-term follow up data are not widely available; however, recent outcome does seem to be more favorable. Most patients who undergo placement of a right ventricle-to-pulmonary conduit require numerous conduit replacements throughout their lifetime, owing to progressive stenosis or insufficiency of the bioprosthetic valve. [12, 13]

Patients with inadequate pulmonary blood flow and marked cyanosis develop complications affecting multiple organ systems, including hematologic, skeletal, renal, and neurologic, causing significant morbidity and mortality.

In patients with large aortopulmonary collaterals and excessive pulmonary blood flow, congestive heart failure (CHF) may result in failure to thrive (FTT) within the first few months of life. [14]

Patients with tetralogy of Fallot and nonconfluent pulmonary arteries are subject to increased morbidity and mortality related to the frequent need for multiple cardiac surgeries. The risks of cardiopulmonary bypass and anesthesia are also present at each stage of the repair.

Surgical mortality has been reported to be greater among patients with tetralogy of Fallot with pulmonary atresia with a 22q11 deletion compared with patients with normal chromosomes. [6]

In a retrospective observational study (1997-2014) of 48 adult patients with congenital heart disease who underwent heart transplantation, investigators reported that death was significantly associated with a minimum of 3 sternotomies and a MELD-XI (model of end-stage liver disease excluding international normalized ratio [INR]) score greater than 18. [15]  Both 1- and 5-year survival were 77%. The diagnoses included in the study included TOF-PA/double-outlet right ventricle (n=15), D-transposition of the great arteries (TGA) (n=10), tricuspid atresia/double-inlet left ventricle (n=9), ventricular or atrial septal defect (n=4), heterotaxy (n=3), congenitally corrected TGA (n=2), and other diagnoses (n=5). [15]

Complications may include the following:

Residual right ventricular dysfunction from hypoplastic pulmonary arteries, conduit stenosis, or pulmonary valve insufficiency

Cyanosis, hypoxemia, and polycythemia, if not surgically corrected

Atrioventricular conduction abnormalities, right bundle branch block, ventricular arrhythmias in the postoperative patient

Educate patients and/or their families about anatomic details and long-term prognosis, the potential need for multiple surgeries and catheterizations, and postoperative complications. Moreover, at all patient care visits, emphasize the need for bacterial endocarditis prophylaxis if clinically indicated.

Genetic counseling is strongly recommended in patients of childbearing age; the chance that patients with tetralogy of Fallot could have an offspring with congenital heart disease is as high as 15%. Patients with signficant residual hemodynamic abnormalities are advised to avoid pregnancy, because it carries significant mortality risk to both the mother and fetus.

Exercise tolerance and need for restrictions on physical activity depend on the type of repair and hemodynamic state of the patient. Exercise recommendations must be tailored to individual patients by considering the presence of cyanosis, right ventricular hypertension, right ventricular dysfunction, or dysrhythmias. Patients with cyanosis have significantly limited exercise capacity.

Children and adults who have had complete repair of tetralogy of Fallot with pulmonary atresia may have limited exercise tolerance due to ventricular dysfunction, chronotropic impairment, right ventricular outflow tract obstruction/valve insufficiency, or distal pulmonary artery stenoses.

For patient education information, see Tetralogy of Fallot.

Tchervenkov CI, Roy N. Congenital Heart Surgery Nomenclature and Database Project: pulmonary atresia–ventricular septal defect. Ann Thorac Surg. 2000 Apr. 69(4 Suppl):S97-105. [Medline].

Ferencz C, Rubin JD, McCarter RJ, et al. Congenital heart disease: prevalence at livebirth. The Baltimore-Washington Infant Study. Am J Epidemiol. 1985 Jan. 121(1):31-6. [Medline].

Garg P, Talwar S, Kothari SS, et al. Management of pulmonary arterial supply dependent on a coronary arterial fistula in a patient with tetralogy of fallot with pulmonary atresia. World J Pediatr Congenit Heart Surg. 2012 Oct 1. 3(4):499-503. [Medline].

Van Praagh R, Van Praagh S, Nebesar RA, et al. Tetralogy of Fallot: underdevelopment of the pulmonary infundibulum and its sequelae. Am J Cardiol. 1970 Jul. 26(1):25-33. [Medline].

Marino B, Digilio MC, Toscano A, et al. Anatomic patterns of conotruncal defects associated with deletion 22q11. Genet Med. 2001 Jan-Feb. 3(1):45-8. [Medline].

Carotti A, Digilio MC, Piacentini G, Saffirio C, Di Donato RM, Marino B. Cardiac defects and results of cardiac surgery in 22q11.2 deletion syndrome. Dev Disabil Res Rev. 2008. 14(1):35-42. [Medline].

Digilio MC, Marino B, Grazioli S, et al. Comparison of occurrence of genetic syndromes in ventricular septal defect with pulmonic stenosis (classic tetralogy of Fallot) versus ventricular septal defect with pulmonic atresia. Am J Cardiol. 1996 Jun 15. 77(15):1375-6. [Medline].

Bertranou EG, Blackstone EH, Hazelrig JB, et al. Life expectancy without surgery in tetralogy of Fallot. Am J Cardiol. 1978 Sep. 42(3):458-66. [Medline].

Leonard H, Derrick G, O’Sullivan J, Wren C. Natural and unnatural history of pulmonary atresia. Heart. 2000 Nov. 84(5):499-503. [Medline].

Fukui D, Kai H, Takeuchi T, et al. Longest survivor of pulmonary atresia with ventricular septal defect: well-developed major aortopulmonary collateral arteries demonstrated by multidetector computed tomography. Circulation. 2011 Nov 8. 124(19):2155-7. [Medline].

Marrelli AJ, Perloff JK, Child JS, Laks H. Pulmonary atresia with ventricular septal defect in adults. Circulation. 1994. 89(1):243-51. [Medline].

Dearani JA, Danielson GK, Puga FJ, et al. Late follow-up of 1095 patients undergoing operation for complex congenital heart disease utilizing pulmonary ventricle to pulmonary artery conduits. Ann Thorac Surg. 2003 Feb. 75(2):399-410; discussion 410-1. [Medline].

Mohammadi S, Belli E, Martinovic I, et al. Surgery for right ventricle to pulmonary artery conduit obstruction: risk factors for further reoperation. Eur J Cardiothorac Surg. 2005 Aug. 28(2):217-22. [Medline].

Grant EK, Berger JT. Use of pulmonary hypertension medications in patients with tetralogy of Fallot with pulmonary atresia and multiple aortopulmonary collaterals. Pediatr Cardiol. 2015 Oct 28. [Medline].

Lewis M, Ginns J, Schulze C, et al. Outcomes of adult patients with congenital heart disease after heart transplantation: impact of disease type, previous thoracic surgeries, and bystander organ dysfunction. J Card Fail. 2015 Nov 11. [Medline].

Geva T, Greil GF, Marshall AC, et al. Gadolinium-enhanced 3-dimensional magnetic resonance angiography of pulmonary blood supply in patients with complex pulmonary stenosis or atresia: comparison with x-ray angiography. Circulation. 2002 Jul 23. 106(4):473-8. [Medline]. [Full Text].

Bernardes RJ, Marchiori E, Bernardes PM, Monzo Gonzaga MB, Simoes LC. A comparison of magnetic resonance angiography with conventional angiography in the diagnosis of tetralogy of Fallot. Cardiol Young. 2006 Jun. 16(3):281-8. [Medline].

Rajeshkannan R, Moorthy S, Sreekumar KP, Ramachandran PV, Kumar RK, Remadevi KS. Role of 64-MDCT in evaluation of pulmonary atresia with ventricular septal defect. AJR Am J Roentgenol. 2010 Jan. 194(1):110-8. [Medline].

Rajeshkannan R, Moorthy S, Sreekumar KP, Ramachandran PV, Kumar RK, Remadevi KS. Role of 64-MDCT in evaluation of pulmonary atresia with ventricular septal defect. AJR Am J Roentgenol. 2010 Jan. 194(1):110-8. [Medline].

O’Meagher S, Seneviratne M, Skilton MR, et al. Right ventricular mass is associated with exercise capacity in adults with repaired tetralogy of Fallot. Pediatr Cardiol. 2015 Aug. 36 (6):1225-31. [Medline].

Mackie AS, Gauvreau K, Perry SB, et al. Echocardiographic predictors of aortopulmonary collaterals in infants with tetralogy of fallot and pulmonary atresia. J Am Coll Cardiol. 2003 Mar 5. 41(5):852-7. [Medline].

Mair DD, Julsrud PR. Diagnostic evaluation of pulmonary atresia and ventricular septal defect cardiac catheterization and angiography. Prog Pediatr Cardiol. 1992. 1(1):23-26.

Hugues N, Abadir S, Dragulescu A, et al. Transcatheter perforation followed by pulmonary valvuloplasty in neonates with pulmonary atresia and ventricular septal defect. Arch Cardiovasc Dis. 2009 May. 102(5):427-32. [Medline].

Duncan BW, Mee RB, Prieto LR, et al. Staged repair of tetralogy of Fallot with pulmonary atresia and major aortopulmonary collateral arteries. J Thorac Cardiovasc Surg. 2003 Sep. 126(3):694-702. [Medline].

Davies B, Mussa S, Davies P, et al. Unifocalization of major aortopulmonary collateral arteries in pulmonary atresia with ventricular septal defect is essential to achieve excellent outcomes irrespective of native pulmonary artery morphology. J Thorac Cardiovasc Surg. 2009 Dec. 138(6):1269-75.e1. [Medline].

Malhotra SP, Hanley FL. Surgical management of pulmonary atresia with ventricular septal defect and major aortopulmonary collaterals: a protocol-based approach. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2009. 145-51. [Medline].

Maskatia SA, Feinstein JA, Newman B, Hanley FL, Roth SJ. Pulmonary reperfusion injury after the unifocalization procedure for tetralogy of Fallot, pulmonary atresia, and major aortopulmonary collateral arteries. J Thorac Cardiovasc Surg. 2012 Jul. 144(1):184-9. [Medline].

Fouilloux V, Bonello B, Kammache I, Fraisse A, Mace L, Kreitmann B. Management of patients with pulmonary atresia, ventricular septal defect, hypoplastic pulmonary arteries and major aorto-pulmonary collaterals: Focus on the strategy of rehabilitation of the native pulmonary arteries. Arch Cardiovasc Dis. 2012 Dec. 105(12):666-75. [Medline].

Sierra J, Christenson JT, Lahlaidi NH, Beghetti M, Kalangos A. Right ventricular outflow tract reconstruction: what conduit to use? Homograft or Contegra?. Ann Thorac Surg. 2007 Aug. 84(2):606-10; discussion 610-1. [Medline].

Niemantsverdriet MB, Ottenkamp J, Gauvreau K, Del Nido PJ, Hazenkamp MG, Jenkins KJ. Determinants of right ventricular outflow tract conduit longevity: a multinational analysis. Congenit Heart Dis. 2008 May. 3(3):176-84. [Medline].

Belli E, Salihoglu E, Leobon B, et al. The performance of Hancock porcine-valved Dacron conduit for right ventricular outflow tract reconstruction. Ann Thorac Surg. 2010 Jan. 89(1):152-7; discussion 157-8. [Medline].

Kaza AK, Lim HG, Dibardino DJ, et al. Long-term results of right ventricular outflow tract reconstruction in neonatal cardiac surgery: options and outcomes. J Thorac Cardiovasc Surg. 2009 Oct. 138(4):911-6. [Medline].

Cheatham JP, Hellenbrand WE, Zahn EM, et al. Clinical and hemodynamic outcomes up to 7 years after transcatheter pulmonary valve replacement in the US melody valve investigational device exemption trial. Circulation. 2015 Jun 2. 131(22):1960-70. [Medline].

Lofland GK. The management of pulmonary atresia, ventricular septal defect, and multiple aorta pulmonary collateral arteries by definitive single stage repair in early infancy. Eur J Cardiothorac Surg. 2000 Oct. 18(4):480-6. [Medline].

Reddy VM, Petrossian E, McElhinney DB, et al. One-stage complete unifocalization in infants: when should the ventricular septal defect be closed?. J Thorac Cardiovasc Surg. 1997 May. 113(5):858-66; discussion 866-8. [Medline].

Learn C, Phillips A, Chisolm J, et al. Pulmonary atresia with ventricular septal defect and multifocal pulmonary blood supply: does an intensive interventional approach improve the outcome?. Congenit Heart Dis. 2012 Mar-Apr. 7(2):111-21. [Medline].

Michael D Pettersen, MD Consulting Staff, Rocky Mountain Pediatric Cardiology, Pediatrix Medical Group

Michael D Pettersen, MD is a member of the following medical societies: American Society of Echocardiography

Disclosure: Received income in an amount equal to or greater than $250 from: Fuji Medical Imaging.

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

Ameeta Martin, MD Clinical Associate Professor, Department of Pediatric Cardiology, University of Nebraska College of Medicine

Ameeta Martin, MD is a member of the following medical societies: American College of Cardiology

Disclosure: Nothing to disclose.

Howard S Weber, MD, FSCAI Professor of Pediatrics, Section of Pediatric Cardiology, Pennsylvania State University College of Medicine; Director of Interventional Pediatric Cardiology, Penn State Hershey Children’s Hospital

Howard S Weber, MD, FSCAI is a member of the following medical societies: Society for Cardiovascular Angiography and Interventions

Disclosure: Received income in an amount equal to or greater than $250 from: Abbott Medical .

Ira H Gessner, MD Professor Emeritus, Pediatric Cardiology, University of Florida College of Medicine

Ira H Gessner, MD is a member of the following medical societies: American Academy of Pediatrics, American College of Cardiology, American Heart Association, American Pediatric Society, Society for Pediatric Research

Disclosure: Nothing to disclose.

The authors and editors of Medscape Reference gratefully acknowledge the contributions of previous author Aparna Kulkarni, MBBS, MD, to the development and writing of the source article.

Tetralogy of Fallot With Pulmonary Atresia

Research & References of Tetralogy of Fallot With Pulmonary Atresia|A&C Accounting And Tax Services
Source