Premature Ventricular Contraction

Premature Ventricular Contraction

No Results

No Results

processing….

A premature ventricular contraction (PVC) is caused by an ectopic cardiac pacemaker located in the ventricle. PVCs are characterized by premature and bizarrely shaped QRS complexes that are unusually long (typically >120 msec) and appear wide on the electrocardiogram (ECG). These complexes are not preceded by a P wave, and the T wave is usually large and oriented in a direction opposite the major deflection of the QRS.

The clinical significance of PVCs depends on their frequency, complexity, and hemodynamic response.

PVCs reflect activation of the ventricles from a site below the atrioventricular node (AVN). Suggested mechanisms for PVCs are reentry, triggered activity, and enhanced automaticity.

Reentry occurs when an area of one-way block in the Purkinje fibers and a second area of slow conduction are present. This condition is frequently seen in patients with underlying heart disease that creates areas of differential conduction and recovery due to myocardial scarring or ischemia. During ventricular activation, the area of slow conduction activates the blocked part of the system after the rest of the ventricle has recovered, resulting in an extra beat. Reentry can produce single ectopic beats, or it can trigger paroxysmal tachycardia.

Triggered beats are considered to be due to after-depolarizations triggered by the preceding action potential. These are often seen in patients with ventricular arrhythmias due to digoxin toxicity and reperfusion therapy after myocardial infarction (MI).

Enhanced automaticity suggests an ectopic focus of pacemaker cells in the ventricle that has a subthreshold potential for firing. The basic rhythm of the heart raises these cells to threshold, which precipitates an ectopic beat. This process is the underlying mechanism for arrhythmias due to excess catecholamines and some electrolyte deficiencies, particularly hyperkalemia.

Ventricular ectopy associated with a structurally normal heart most commonly occurs from the right ventricular outflow tract beneath the pulmonic valve. The mechanism is thought to be enhanced automaticity versus triggered activity. These arrhythmias are often induced by exercise, isoproterenol (in the electrophysiology laboratory), the recovery phase of exercise, or hormonal changes in female patients (pregnancy, menses, menopause).

The characteristic ECG pattern for these arrhythmias is a large, tall R wave in the inferior leads with a left bundle-branch block pattern in V1 . If the source is the left ventricular outflow tract, there is a right bundle-branch block pattern in V1 . Beta-blocker therapy is first-line treatment for symptomatic patients.

Factors that increase the risk of PVCs include male sex, advanced age, African American race, hypertension and underlying ischemic heart disease, a bundle-branch block on 12-lead ECG, hypomagnesemia, [1] and hypokalemia.

Cardiac causes of premature ventricular contractions include the following:

Other causes of PVCs include the following:

PVCs are one of the most common arrhythmias and can occur in patients with or without heart disease. Their prevalence varies greatly, with estimates ranging from less than 3% to more than 60% in asymptomatic individuals. Data from large, population-based studies indicate that the prevalence ranges from less than 3% for young white women without heart disease to almost 20% for older African American individuals with hypertension.

Black race is associated with an increased frequency of PVCs on routine monitoring. [5] In a large population-based study of PVC prevalence, black race alone increased the risk of PVCs by 30% in comparison with the risk in white individuals.

Ventricular ectopy is more prevalent in men than in women of the same age. Male sex alone increases the risk of identifying PVCs on routine screening, with an odds ratio for male sex of 1.39 as compared with female sex.

PVC frequency increases with age, reflecting the increased prevalence of hypertension and cardiac disease in aging populations.

In asymptomatic patients without underlying heart disease, the long-term prognosis is similar to that of the general population. Asymptomatic patients with ejection fractions greater than 40% have a 3.5% incidence of sustained ventricular tachycardia or cardiac arrest. Therefore, in patients with no evidence of heart disease on noninvasive workup, reassurance is appropriate.

One caveat to this is that emerging data suggest that very frequent ventricular ectopy (>4000/24 hr) may be associated with the development of cardiomyopathy related to abnormal electrical activation of the heart. This mechanism is thought to be similar to that of chronic right ventricular pacing associated cardiomyopathy.

In the setting of acute coronary ischemia/infarction, patients with simple PVCs rarely progress to malignant arrhythmias. However, persistent complex ectopy after MI is associated with increased risk of sudden death and may be an indication for electrophysiologic studies (EPS).

In patients with underlying chronic structural heart disease (eg, cardiomyopathy, infarction, valvular disease) and complex ectopy (eg, >10 PVCs/hr), mortality is significantly increased. The following points should be kept in mind.

First, understanding of the role of antiarrhythmic therapy in the months after MI is poor. The Cardiac Arrhythmia Suppression Trial (CAST) studied patients with ventricular ectopy after MI to see if antiarrhythmic therapy improved survival rates. [6]  Despite suppression of ectopy on Holter monitoring, patients treated with encainide, flecainide, or moricizine had increased rates of sudden death and death from all causes. Findings have suggested a role for amiodarone in this patient population and have had significant reductions in rates of post-MI ventricular arrhythmias and death. Moricizine was discontinued in July 2007 because of diminished market demand.

Second, left ventricular dysfunction has a stronger association with increased mortality rate than do PVCs. Many now believe that PVCs reflect the severity of heart disease rather than contribute to arrhythmogenesis. Some studies in recent years suggest that increased variability of the PVC coupling interval in patients with underlying heart diseases, including left ventricular dysfunction, is a predictor of cardiac death; however, this remains a matter of debate. [7, 8]

Third, EPS has a primary role in risk stratification of patients with frequent or complex PVCs. Patients with PVCs that are noninducible (ie, unable to trigger ventricular tachycardia during stimulation) have a low risk of sudden death.

Frequent PVCs may be associated with increased risk of stroke in patients who do not have hypertension and diabetes. [9]

The clinical significance of PVCs depends on the clinical context in which they occur, as follows:

Del Gobbo LC, Song Y, Poirier P, Dewailly E, Elin RJ, Egeland GM. Low serum magnesium concentrations are associated with a high prevalence of premature ventricular complexes in obese adults with type 2 diabetes. Cardiovasc Diabetol. 2012 Mar 9. 11(1):23. [Medline].

Cha YM, Lee GK, Klarich KW, Grogan M. Premature ventricular contraction-induced cardiomyopathy: a treatable condition. Circ Arrhythm Electrophysiol. 2012 Feb 1. 5(1):229-36. [Medline].

Yokokawa M, Kim HM, Good E, Chugh A, Pelosi F Jr, Alguire C, et al. Relation of symptoms and symptom duration to premature ventricular complex-induced cardiomyopathy. Heart Rhythm. 2012 Jan. 9(1):92-5. [Medline].

Lee AK, Deyell MW. Premature ventricular contraction-induced cardiomyopathy. Curr Opin Cardiol. 2016 Jan. 31 (1):1-10. [Medline].

Simpson RJ, Cascio WE, Schreiner PJ, et al. Prevalence of premature ventricular contractions in a population of African American and white men and women: the Atherosclerosis Risk in Communities (ARIC) study. Am Heart J. 2002 Mar. 143(3):535-40. [Medline].

CAST Investigators. Preliminary report: effect of encainide and flecainide on mortality in a randomized trial of arrhythmia suppression after myocardial infarction. The Cardiac Arrhythmia Suppression Trial (CAST) Investigators. N Engl J Med. 1989 Aug 10. 321(6):406-12. [Medline].

Lee CH, Park KH, Nam JH, et al. Increased variability of the coupling interval of premature ventricular contractions as a Predictor of cardiac mortality in patients with left ventricular dysfunction. Circ J. 2015 Oct 23. 79 (11):2360-6. [Medline].

Maruyama T, Fukata M. Increased coupling interval variability – mechanistic, diagnostic and prognostic Implication of premature ventricular contractions and underlying heart diseases. Circ J. 2015 Oct 23. 79 (11):2317-9. [Medline].

Agarwal SK, Heiss G, Rautaharju PM, Shahar E, Massing MW, Simpson RJ Jr. Premature ventricular complexes and the risk of incident stroke: the Atherosclerosis Risk In Communities (ARIC) Study. Stroke. 2010 Apr. 41(4):588-93. [Medline].

Tracy CM, Akhtar M, DiMarco JP, Packer DL, Weitz HH, Winters WL, et al. American College of Cardiology/American Heart Association Clinical Competence Statement on invasive electrophysiology studies, catheter ablation, and cardioversion: A report of the American College of Cardiology/American Heart Association/American College of Physicians-American Society of Internal Medicine Task Force on Clinical Competence. Circulation. 2000 Oct 31. 102 (18):2309-20. [Medline].

American College of Cardiology, American Heart Association, American College of Physicians Task Force on Clinical Competence and Training, Heart Rhythm Society, Tracy CM, Akhtar M, et al. American College of Cardiology/American Heart Association 2006 update of the clinical competence statement on invasive electrophysiology studies, catheter ablation, and cardioversion: a report of the American College of Cardiology/American Heart Association/American College of Physicians Task Force on Clinical Competence and Training: developed in collaboration with the Heart Rhythm Society. Circulation. 2006 Oct 10. 114 (15):1654-68. [Medline].

Cairns JA, Connolly SJ, Roberts R, Gent M. Randomised trial of outcome after myocardial infarction in patients with frequent or repetitive ventricular premature depolarisations: CAMIAT. Canadian Amiodarone Myocardial Infarction Arrhythmia Trial Investigators. Lancet. 1997 Mar 8. 349(9053):675-82. [Medline].

Bala R, Marchlinski FE. Electrocardiographic recognition and ablation of outflow tract ventricular tachycardia. Heart Rhythm. 2007 Mar. 4(3):366-70. [Medline].

Zhong L, Lee YH, Huang XM, Asirvatham SJ, Shen WK, Friedman PA, et al. Relative efficacy of catheter ablation vs antiarrhythmic drugs in treating premature ventricular contractions: a single-center retrospective study. Heart Rhythm. 2014 Feb. 11 (2):187-93. [Medline].

[Guideline] Aliot EM, Stevenson WG, Almendral-Garrote JM, Bogun F, Calkins CH, Delacretaz E, et al. EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias: developed in a partnership with the European Heart Rhythm Association (EHRA), a Registered Branch of the European Society of Cardiology (ESC), and the Heart Rhythm Society (HRS); in collaboration with the American College of Cardiology (ACC) and the American Heart Association (AHA). Europace. 2009 Jun. 11(6):771-817. [Medline]. [Full Text].

Fichtner S, Senges J, Hochadel M, Tilz R, Willems S, Eckardt L, et al. Safety and efficacy in ablation of premature ventricular contraction: data from the German ablation registry. Clin Res Cardiol. 2017 Jan. 106 (1):49-57. [Medline].

Im SI, Park KM, Park SJ, Kim JS, On YK. New electrocardiographic criteria for predicting successful ablation of premature ventricular contractions from the right coronary cusp. Int J Cardiol. 2016 Sep 16. 224:199-205. [Medline].

Zamir M, Kimmerly DS, Shoemaker JK. Cardiac mechanoreceptor function implicated during premature ventricular contraction. Auton Neurosci. 2012 Apr 3. 167(1-2):50-5. [Medline].

Bradfield JS, Homsi M, Shivkumar K, Miller JM. Coupling interval variability differentiates ventricular ectopic complexes arising in the aortic sinus of valsalva and great cardiac vein from other sources: mechanistic and arrhythmic risk implications. J Am Coll Cardiol. 2014 May 27. 63 (20):2151-8. [Medline].

Trevisi N, Silberbauer J, Radinovic A, et al. New diagnostic criteria for identifying left-sided ventricular ectopy using non-contact mapping and virtual unipolar electrogram analysis. Europace. 2015 Jan. 17 (1):108-16. [Medline].

James E Keany, MD, FACEP Associate Medical Director, Emergency Services, Mission Hospital Regional Medical Center, Children’s Hospital of Orange County at Mission

James E Keany, MD, FACEP is a member of the following medical societies: American College of Emergency Physicians, American College of Sports Medicine, California Medical Association

Disclosure: Nothing to disclose.

Aseem D Desai, MD, FACC Cardiac Electrophysiologist, Mission Internal Medicine Group, Inc

Aseem D Desai, MD, FACC is a member of the following medical societies: Alpha Omega Alpha, American College of Cardiology, American College of Physicians, American Heart Association, Phi Beta Kappa

Disclosure: Nothing to disclose.

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Eddy S Lang, MDCM, CCFP(EM), CSPQ Associate Professor, Senior Researcher, Division of Emergency Medicine, Department of Family Medicine, University of Calgary Faculty of Medicine; Assistant Professor, Department of Family Medicine, McGill University Faculty of Medicine, Canada

Eddy S Lang, MDCM, CCFP(EM), CSPQ is a member of the following medical societies: American College of Emergency Physicians, Society for Academic Emergency Medicine, Canadian Association of Emergency Physicians

Disclosure: Nothing to disclose.

Erik D Schraga, MD Staff Physician, Department of Emergency Medicine, Mills-Peninsula Emergency Medical Associates

Disclosure: Nothing to disclose.

Assaad J Sayah, MD, FACEP Senior Vice President and Chief Medical Officer, Cambridge Health Alliance

Assaad J Sayah, MD, FACEP is a member of the following medical societies: American College of Emergency Physicians, Massachusetts Medical Society

Disclosure: Nothing to disclose.

Premature Ventricular Contraction

Research & References of Premature Ventricular Contraction|A&C Accounting And Tax Services
Source