Percutaneous Abscess Drainage

Percutaneous Abscess Drainage

No Results

No Results


One definition of an abscess is an infected fluid collection that is drainable. A common dictum is as follows: “If it will not go through a catheter, it cannot be drained; if it is not infected, it is not an abscess.”

Differentiating a phlegmon from an abscess can be difficult. A phlegmon may be defined as a vascularized infection that still has perfusion. Some nonsuppurative lymphadenitis may not demonstrate enhancement on imaging studies (eg, computed tomography [CT], magnetic resonance imaging [MRI], or amplitude Doppler ultrasonography [US]), but other collections that do not show central enhancement suggest the presence of an abscess, hematoma, or necrosis.

A phlegmon is an undrainable infection. A viscous abscess without significant debris may be difficult to aspirate through a needle but should be drainable through catheters of appropriate caliber. Irrigation with saline or fibrinolytic agents may be necessary for successful drainage of an abscess with significant debris, blood, or viscous elements. [1]

Percutaneous abscess drainage (PAD), [2]  once revolutionary, has evolved into a routine procedure, replacing open surgical abscess drainage in all but the most difficult or inaccessible cases. [3] It was originally believed that only patients with simple fluid collections were candidates for PAD; however, researchers subsequently demonstrated that both septated and viscous fluid collections could be successfully treated percutaneously, particularly with the adjunctive use of lytic agents. The simpler the abscess, the more likely it is that PAD will be rapidly successful.

An aggressive practical approach with relatively simple devices and techniques may yield a high success rate with few complications.

Certain basic medicolegal principles apply to all invasive radiology, and thus to PAD as well. [4] Invasive radiology lawsuits are usually related to procedure complications rather than to misdiagnosis. Complaints stem from the following five general causes:

Successful PAD depends on correct initial placement of the drainage device and on the device remaining in place for the duration of treatment. Accordingly, the greatest complication risk for PAD, as for all catheter placement procedures, is catheter dislodgment.

No ideal fixation device or technique is available. Locking sutures on drainage catheters may not reduce the incidence of catheter dislodgment but are indicated for maintaining a catheter in a cavity removed from the access (as in transhepatic cholecystostomy or transrectal pelvic abscess drainage). [5] Torque generated by a patient rolling over in bed overcomes any catheter fixation system. A catheter fixator is merely a catheter position reminder.

The author has had some success using two catheter fixation devices in tandem. However, even this aggressive approach will not prevent all catheter dislodgments. Debilitated, confused, and uncooperative patients are at risk. Patients often do well in a home setting with well-motivated caregivers.

It is important to educate the patient, as well as clinical nursing and physician staff, to monitor the catheter carefully for possible dislodgment. Catheter dislodgment is reflected in a change in the length of catheter visible outside of the patient. When this is noticed, the catheter should be secured to the skin, and radiographs should be obtained for comparison with the baseline study.

Catheter dislodgment may be noticed only when the catheter is leaking (coiled under the bandage) or on the floor. If it is detected early enough (usually < 8 hours), replacement catheters may be placed along the existing tract by using a 5-French dilator, contrast, and a hydrophilic guide wire.

The realities of health care reimbursement and reform have led to patients being discharged from the hospital sooner than before, either to home or skilled nursing facilities. These patients are still in the active phase of PAD but are no longer in a septic state and are cleared for discharge and transfer. As a result, the intensive follow-up that is optimal for abscess resolution may not be as easy to achieve as it once was.

The authors have encountered anecdotal cases of patients returning from skilled nursing facilities with larger, more extensive abscesses than they had when they were discharged. This can be attributed to fragmentation of care, with different teams taking over at each facility. In the best of situations, communication with the new treatment team or outpatient follow-up with the original treatment team continues until abscess resolution.

In a study of CT-guided percutaneous catheter drainage for acute necrotizing pancreatitis, Mortelé et al found that primary CT-guided percutaneous drainage was successful in approximately 50% of patients. [6] The presence of multisystem organ failure appeared to be a more important indicator of outcome than the presence of infection.

In all, 17 of the 35 patients in this study were treated successfully with CT-guided percutaneous catheter drainage alone. [6] The effectiveness of this approach in patients with sterile necrosis was not significantly different from that in patients with infected necrosis. Of 11 patients with multisystem organ failure (10 with sterile necrosis, one with infected necrosis), only four were treated successfully with CT-guided drainage alone; five patients died. Of 24 patients without multisystem organ failure, 13 were treated successfully with CT-guided percutaneous drainage alone; one patient died.

According to Weber et al in a German study, percutaneous transhepatic biliary drainage (PTBD) should be considered the treatment of choice in patients with benign anastomotic stricture after bilioenterostomy, especially after stricturing of a hepatojejunostomy. [7]

Between 1996 and 2006, the authors studied 44 patients with benign anastomotic stricture after bilioenterostomy, and in 27 of the patients (successful treatment, 61.4%), the percutaneous transhepatic biliary drain was successfully removed after 19.9±16.1 months. [7] During follow-up (mean, 53.7 ± 28.4 months after removal of the drain), there was no evidence of recurrent strictures. Permanent drains were necessary in 10 of the 44 patients. In seven of the 44, repeat operation was necessary because of PTBD failure.

Kloek et al compared the outcomes of endoscopic biliary drainage (EBD) and PTBD in 101 patients with resectable hilar cholangiocarcinoma (HCCA) between 2001 and July 2008, 90 of whom underwent EBD and 11 PTBD. [8] The technical success rates were 81% for EBD and 100% for PTBD. Stent dislocation was similar in the EBD and PTBD groups; infectious complications were significantly more common in the EBD group; and patients in the EBD group underwent more drainage procedures and had a significantly longer drainage period until laparotomy. In 30 patients, EBD was converted to PTBD because of EBD failure.

Yamakado et al evaluated the safety, feasibility, and clinical utility of percutaneous transhepatic drainage under real-time CT guidance in 12 patients with inaccessible abdominal abscesses. [9, 10] (Abscesses were considered inaccessible because they were surrounded by the liver and other organs.) In this study, an 8-French catheter was advanced into the abscess cavity through the liver parenchyma. Drainage catheters were placed with no complications in all patients, and all abscesses were drained, shrinking immediately after catheter placement.

Pugmire et al assessed the success rate of PAD for abscesses related to Crohn disease in 25 pediatric patients, paying particular attention to end points relevant to biologic therapy. [11] Success was classified as either technical (ie, catheter placement within the abscess with reduction in abscess size on posttreatment imaging) or clinical (either no surgery within 1 year of drainage or surgical resection following drainage with no residual abscess at surgery or on preoperative imaging). All cases were classified as technical successes, and 19 were considered clinical successes.

Ye et al, in a study comparing the outcomes of posterior and anteroposterior approaches to percutaneous drainage of tubercular psoas abscesses, found that the posterior approach appeared to have the same clinical efficacy as the anteroposterior approach but was associated with a shorter average hospital stay and a lower complication rate. [12]

Laborda A, De Gregorio MA, Miguelena JM, Medrano J, Gómez-Arrue J, Serrano C, et al. Percutaneous treatment of intrabdominal abscess: urokinase versus saline serum in 100 cases using two surgical scoring systems in a randomized trial. Eur Radiol. 2009 Jul. 19 (7):1772-9. [Medline].

Jaffe TA, Nelson RC. Image-guided percutaneous drainage: a review. Abdom Radiol (NY). 2016 Apr. 41 (4):629-36. [Medline].

Levin DC, Eschelman D, Parker L, Rao VM. Trends in Use of Percutaneous Versus Open Surgical Drainage of Abdominal Abscesses. J Am Coll Radiol. 2015 Dec. 12 (12 Pt A):1247-50. [Medline].

Kadir S, ed. Current Practice of Interventional Radiology. Philadelphia: BC Decker; 1991.

Alis H, Soylu A, Dolay K, Aygun E. Endoscopic transcolonic catheter-free pelvic abscess drainage. Can J Gastroenterol. 2008 Dec. 22 (12):983-6. [Medline]. [Full Text].

Mortelé KJ, Girshman J, Szejnfeld D, Ashley SW, Erturk SM, Banks PA, et al. CT-guided percutaneous catheter drainage of acute necrotizing pancreatitis: clinical experience and observations in patients with sterile and infected necrosis. AJR Am J Roentgenol. 2009 Jan. 192 (1):110-6. [Medline].

Weber A, Rosca B, Neu B, Rösch T, Frimberger E, Born P, et al. Long-term follow-up of percutaneous transhepatic biliary drainage (PTBD) in patients with benign bilioenterostomy stricture. Endoscopy. 2009 Apr. 41 (4):323-8. [Medline].

Kloek JJ, van der Gaag NA, Aziz Y, Rauws EA, van Delden OM, Lameris JS, et al. Endoscopic and percutaneous preoperative biliary drainage in patients with suspected hilar cholangiocarcinoma. J Gastrointest Surg. 2010 Jan. 14 (1):119-25. [Medline]. [Full Text].

Yamakado K, Takaki H, Nakatsuka A, Kashima M, Uraki J, Yamanaka T, et al. Percutaneous transhepatic drainage of inaccessible abdominal abscesses following abdominal surgery under real-time CT-fluoroscopic guidance. Cardiovasc Intervent Radiol. 2010 Feb. 33 (1):161-3. [Medline].

McNeeley MF, Vo NJ, Prabhu SJ, Vergnani J, Shaw DW. Percutaneous drainage of intra-abdominal abscess in children with perforated appendicitis. Pediatr Radiol. 2012 Jul. 42 (7):805-12. [Medline].

Pugmire BS, Gee MS, Kaplan JL, Hahn PF, Doody DP, Winter HS, et al. Role of percutaneous abscess drainage in the management of young patients with Crohn disease. Pediatr Radiol. 2016 May. 46 (5):653-9. [Medline].

Ye F, Zhou Q, Feng D. Comparison of the Anteroposterior and Posterior Approaches for Percutaneous Catheter Drainage of Tuberculous Psoas Abscess. Med Sci Monit. 2017 Nov 11. 23:5374-5381. [Medline]. [Full Text].

Liao WI, Tsai SH, Yu CY, Huang GS, Lin YY, Hsu CW, et al. Pyogenic liver abscess treated by percutaneous catheter drainage: MDCT measurement for treatment outcome. Eur J Radiol. 2012 Apr. 81 (4):609-15. [Medline].

Cronin CG, Gervais DA, Hahn PF, Arellano R, Guimaraes AR, Mueller PR. Treatment of deep intramuscular and musculoskeletal abscess: experience with 99 CT-guided percutaneous catheter drainage procedures. AJR Am J Roentgenol. 2011 May. 196 (5):1182-8. [Medline].

Kelogrigoris M, Tsagouli P, Stathopoulos K, Tsagaridou I, Thanos L. CT-guided percutaneous drainage of lung abscesses: review of 40 cases. JBR-BTR. 2011 Jul-Aug. 94 (4):191-5. [Medline].

Kajiwara K, Yamagami T, Ishikawa M, Yoshimatsu R, Baba Y, Nakamura Y, et al. CT fluoroscopy-guided percutaneous drainage: comparison of the one step and the Seldinger techniques. Minim Invasive Ther Allied Technol. 2017 Jun. 26 (3):162-167. [Medline].

Yamagami T, Terayama K, Yoshimatsu R, Matsumoto T, Miura H, Nishimura T. Percutaneous drainage of psoas abscess under real-time computed tomography fluoroscopic guidance. Skeletal Radiol. 2009 Mar. 38 (3):275-80. [Medline].

Barbu ST, Rednic N, Cazacu M. [Ultrasound guided percutaneous drainage in the treatment of local septic complications of chronic pancreatitis]. Rev Med Chir Soc Med Nat Iasi. 2008 Jan-Mar. 112 (1):119-25. [Medline].

Laganà D, Carrafiello G, Mangini M, Ianniello A, Giorgianni A, Nicotera P, et al. Image-guided percutaneous treatment of abdominal-pelvic abscesses: a 5-year experience. Radiol Med. 2008 Oct. 113 (7):999-1007. [Medline].

Zhang L, Wan D, Zhang L, Xu S, Xie H, Lin S. Hepatic rupture: A case report of a severe complication of percutaneous catheter drainage. Medicine (Baltimore). 2018 Jan. 97 (2):e9499. [Medline].

Evan J Samett, MD Interventional Radiology

Evan J Samett, MD is a member of the following medical societies: American College of Radiology, Radiological Society of North America

Disclosure: Nothing to disclose.

Douglas M Coldwell, MD, PhD Professor of Radiology, Director, Division of Vascular and Interventional Radiology, University of Louisville School of Medicine

Douglas M Coldwell, MD, PhD is a member of the following medical societies: American Association for Cancer Research, American Heart Association, SWOG, Special Operations Medical Association, Society of Interventional Radiology, American Physical Society, American College of Radiology, American Roentgen Ray Society

Disclosure: Received consulting fee from Sirtex, Inc. for speaking and teaching; Received honoraria from DFINE, Inc. for consulting.

Kyung J Cho, MD, FACR, FSIR William Martel Emeritus Professor of Radiology (Interventional Radiology), Frankel Cardiovascular Center, University of Michigan Health System

Kyung J Cho, MD, FACR, FSIR is a member of the following medical societies: American College of Radiology, American Heart Association, American Medical Association, American Roentgen Ray Society, Association of University Radiologists, Radiological Society of North America

Disclosure: Nothing to disclose.

Fredric A Hoffer, MD, FSIR Affiliate Professor of Radiology, University of Washington School of Medicine; Member, Quality Assurance Review Center

Fredric A Hoffer, MD, FSIR is a member of the following medical societies: Children’s Oncology Group, Radiological Society of North America, Society for Pediatric Radiology, Society of Interventional Radiology

Disclosure: Nothing to disclose.

Percutaneous Abscess Drainage

Research & References of Percutaneous Abscess Drainage|A&C Accounting And Tax Services