Pediatric Atrial Flutter

No Results

No Results

processing….

Atrial flutter is an electrocardiographic descriptor used both specifically and nonspecifically to describe various atrial tachycardias. The term was originally applied to adults with regular atrial depolarizations at a rate of 260-340 beats per minute (bpm). Historically, the diagnosis of atrial flutter was restricted to those patients whose surface electrocardiogram (ECG) revealed the classic appearance of “flutter waves.” This sharp demarcation is used less frequently in the current era, where the more electrophysiologically descriptive “atrial reentry tachycardia” is used instead.

Atrial flutter is infrequent in children without congenital heart disease. In these patients with otherwise normal cardiac anatomy atrial reentry tachycardias are observed mostly during fetal life in late pregnancy, and during adolescence.

In the fetus, atrial flutter is defined as a rapid regular atrial rate of 300-600 bpm accompanied by variable degrees of atrioventricular (AV) conduction block, resulting in slower ventricular rates.

During this type of tachycardia, the atrial rate is so rapid that normal AV nodes usually display a physiologic second-degree block, with a resultant 2:1 conduction ratio. In individuals with AV nodal disease or increased vagal tone, or when certain drugs are used, higher degrees of AV block may develop, such as 3:1 or higher. In individuals with accessory AV nodal pathways, a 1:1 conduction ratio may occur through the accessory pathway with resultant ventricular rates of 260-340 bpm, which can cause sudden death. A 1:1 conduction ratio may also occur when the atrial rate is relatively slow (eg, < 340 bpm) during atrial flutter or when physiologic processes facilitate AV nodal conduction, such that a rapid ventricular response can still result in sudden death.

Patients who have undergone Mustard, Senning, or Fontan operations are more prone to developing this arrhythmia because of atrial scars from surgery and right atrial enlargement, usually seen after the classic Fontan operation. Similarly, patients who have undergone surgical repair of an atrial septal defect, total anomalous pulmonary venous connection, and tetralogy of Fallot may later develop atrial flutter. [1] Individuals with muscular dystrophies such as Emery-Dreifuss [2] and myotonic dystrophy [3] may also develop atrial flutter, as well as those with dilated, restrictive, and hypertrophic cardiomyopathies.

Treatment of children with atrial flutter depends on the age of presentation and baseline cardiac anatomy. Fetal atrial flutter is usually treated with oral maternal antiarrhythmic agents without need for further intervention if ventricular function is acceptable and if there is no placental edema. Once the baby is born, it usually responds well to oral antiarrhythmic medications and subsequently resolves. In the other age groups and in patients with baseline abnormal cardiac anatomy or surgical scars, it usually recurs. In general, treatment may involve medications, cardiac pacing, cardioversion, radiofrequency catheter ablation, or surgical procedures (see Treatment). Drug therapy of atrial flutter in children can be classified under the 3 broad headings of ventricular rate control, acute conversion, and chronic suppression (see Medication).

See Atrial Flutter and Emergent Management of Atrial Flutter for more information on these topics.

For patient education information, see the Heart Health Center, as well as Atrial Flutter, Tetralogy of Fallot, and Supraventricular Tachycardia.

Atrial flutter is a reentrant arrhythmia circuit confined to the atrial chambers. As a rule, atrial flutter originates in the right atrium, whereas atrial fibrillation, which is more frequent in adults, originates in the left atrium.

A flutter circuit typically surrounds an anatomical or functional barrier and includes a zone of slow conduction (or conduction over an extended circuit) and an area of unidirectional block, as required for reentry of all types. Frequently, a premature beat blocks one limb of the circuit and is sufficiently delayed in the other limb (while traversing around the anatomical or functional barrier) to allow for recovery from refractoriness in the first limb.

The reentrant circuits that occur in children with atrial flutter after congenital heart disease surgery are believed to involve abnormal atrial tissue that has been subject to chronic cyanosis, inflammation secondary to surgery, scarring, and increased wall stress in cases of enlarged atria. Such circuits may encircle anatomical barriers such as atriotomy scars or surgical anastomoses, and they may use areas of slow conduction along baffle limbs and other sites of injury in addition to the tricuspid valve–coronary sinus isthmus.

Sinus node dysfunction with bradycardia is generally present in many of these patients years after surgery. This is a contributing factor for development and maintenance of atrial flutter.

Atrial flutter circuits in children with congenital heart disease are typically more variable than those seen in adults. For the most part, atrial flutter circuits in adults are confined to the tricuspid valve–coronary sinus isthmus (or isthmus-dependent flutter).

In the fetus, atrial flutter occurs mainly during the third trimester, although it can occur as early as midgestation. [4] The atrium is believed to reach a critical mass to support an intra-atrial macroreentry circuit at about 27-30 weeks’ gestation. One study demonstrated an association between fetal atrial flutter with atrioventricular reciprocating tachycardia and accessory pathways. They also found that, compared to the neonate, accessory pathways in the fetus had a greater propensity for spontaneous, natural conduction, a finding that may indicate accessory pathways often become nonfunctional at late stages of fetal development. [4]

Atrial flutter may comprise up to one third of all fetal tachyarrhythmias. [4] Most fetuses and neonates with atrial flutter have structurally normal hearts. However, when atrial flutter is detected in a fetus, structural cardiac anomalies such as Ebstein anomaly of the tricuspid valve and atrioventricular (AV) septal defects should be ruled out because of a higher incidence of such defects in these cases.

Some newborns and young children have associated conditions or anomalies that may predispose them to atrial flutter. Atrial septal aneurysms appear to be associated with sustained atrial arrhythmias in newborns, but this association is not as high as is seen in adult subjects. Restrictive cardiomyopathies are also associated with refractory atrial flutter. In Costello syndrome, the dysmorphic appearance is also associated with a dysrhythmia characterized as chaotic atrial tachycardia, and this dysrhythmia may include long episodes of atrial flutter.

Atrial flutter is not uncommon in the immediate postoperative period after congenital heart surgery. Surgery-induced inflammation of the pericardium, scarring, and volume overload may trigger atrial flutter.

Case reports have linked atrial flutter to ingestion of herbal medicines and certain foods. These episodes did not recur after avoidance of the triggers.

Atrial flutter and atrial fibrillation have been related to obesity, alcohol consumption, and hyperthyroidism. [5, 6, 7] One study reported that in adults, diabetes mellitus is a strong independent risk factor for development of atrial flutter and atrial fibrillation. [8]

Atrial flutter is most commonly seen after the Senning or Mustard surgical procedures for transposition of the great arteries (used in the past) and after Fontan repair. According to a United States study, 57% of patients with double-inlet left ventricle who undergo the Fontan operation may be expected to present with atrial flutter or fibrillation by 20 years after surgery. [9] This high prevalence of atrial flutter or fibrillation seen in the atriopulmonary connection type of Fontan operation, however, is not as frequent with the total cavopulmonary connection type of Fontan procedure. The mean annual incidence of new dysrhythmias (predominantly atrial flutter) after the Fontan operation is 5%. According to a multicenter study, tachyarrhythmia prevalence over time was similar between the intracardiac lateral tunnel and the extracardiac conduit Fontan operations. [10]

In an international review, atrial flutter accounted for 26.2% of all cases of fetal tachyarrhythmias, and supraventricular tachycardia (SVT) accounted for 73.2%. [11] In an earlier population study of 3383 English newborns by Southall and colleagues, only 1 newborn had atrial flutter. [12] This likely underestimated the incidence of atrial flutter in utero because spontaneous conversion often occurs during birth and subsequent recurrence is uncommon.

A long-term follow-up study into adulthood of patients undergoing the Mustard or Senning procedure for correction of D-transposition of the great arteries demonstrated SVT in 48%, of which atrial flutter was the most common type (73%). Arrhythmias accounted for 12.7% of pediatric cardiology consultations in a major pediatric academic medical center, of which atrial flutter was the second most common type.

Following atrial septal defect repair, the prevalence of atrial flutter is higher in females (70.7%) than in males. Patients with Fontan repairs present with flutter either as children or as adults. Patients with repaired tetralogy of Fallot tend to present with atrial flutter as young adults. Because the Mustard and Senning procedures are now rarely performed, the cohort of patients with this substrate typically consists of older adolescents and adults.

One study reported that the recurrence rate of atrial flutter and fibrillation in women with preexisting cardiac rhythm disorders during pregnancy was the highest of all the studied arrhythmias, reaching 52%. [13]

Neonatal atrial flutter is usually a self-limiting illness, requiring only conversion of the rhythm with esophageal atrial pacing or cardioversion. Incisional reentrant atrial tachycardia following complex atrial surgery in the repair of congenital heart disease may occur early in the postoperative period; this event is predictive of the occurrence of late postoperative flutter. The prevalence of atrial flutter in several classes of postoperative patients increases with the duration of follow-up.

Morbidity and mortality in patients with atrial flutter largely depend on the following factors:

Age at presentation

Cardiac anatomy (normal anatomy vs congenital heart disease)

Integrity and anatomy of the myocardial conduction system (normal sinus node vs sinus node dysfunction; atrioventricular (AV) block vs normal AV node, with or without accessory pathways)

Ventricular function

Prompt recognition of the arrhythmia and initiation of adequate therapy

The fetus with atrial flutter may have significant morbidity and be at risk for mortality. According to one review, hydrops fetalis developed in as many as 40% of fetuses with atrial flutter. The mortality rate in these fetuses was 8%. [11]

Mortality in newborns with atrial flutter is uncommon. Most patients remain in sinus rhythm following their initial conversion, and the need for antiarrhythmic prophylaxis in these patients during infancy is debated.

In patients with postoperative atrial flutter that develops late following repair of congenital heart disease, the outcome depends on the atrial flutter rate, conduction ratio, and presence of ventricular dysfunction. In patients who have undergone the Mustard procedure, Holter recordings incidentally capturing episodes of sudden fatality confirm that rapidly conducted atrial flutter is the dysrhythmia most frequently responsible for these fatalities.

In contrast, patients who have undergone the Fontan procedure rarely die suddenly but frequently present with symptomatic atrial flutter. This may be caused by a relatively slower atrial flutter rate, a higher degree of AV conduction block, or both.

Prolonged episodes of atrial flutter in asymptomatic or mildly symptomatic patients may be associated with development of atrial thrombi and although this is rare in the congenital heart disease population as is the possibility of thromboembolic event.

When women with heart disease and arrhythmias reach childbearing age, arrhythmias can recur during pregnancy. These arrhythmias significantly increase the risk both for the mother and fetus.

Biviano A, Garan H, Hickey K, Whang W, Dizon J, Rosenbaum M. Atrial flutter catheter ablation in adult patients with repaired tetralogy of Fallot: mechanisms and outcomes of percutaneous catheter ablation in a consecutive series. J Interv Card Electrophysiol. 2010 Aug. 28(2):125-35. [Medline].

Boriani G, Gallina M, Merlini L, et al. Clinical relevance of atrial fibrillation/flutter, stroke, pacemaker implant, and heart failure in Emery-Dreifuss muscular dystrophy: a long-term longitudinal study. Stroke. 2003 Apr. 34(4):901-8. [Medline].

Nazarian S, Wagner KR, Caffo BS, Tomaselli GF. Clinical predictors of conduction disease progression in type I myotonic muscular dystrophy. Pacing Clin Electrophysiol. 2011 Feb. 34(2):171-6. [Medline]. [Full Text].

Wacker-Gussmann A, Strasburger JF, Srinivasan S, Cuneo BF, Lutter W, Wakai RT. Fetal atrial flutter: electrophysiology and associations with rhythms involving an accessory pathway. J Am Heart Assoc. 2016 Jun 14. 5(6):[Medline].

Frost L, Hune LJ, Vestergaard P. [Overweight, obesity and risk factors for atrial fibrillation or flutter–secondary publication. The cohort study Diet, Cancer and Health]. Ugeskr Laeger. 2005 Sep 12. 167(37):3507-9. [Medline].

Frost L, Vestergaard P. Alcohol consumption and the risk of atrial fibrillation or flutter–secondary publication. A cohort study. Ugeskr Laeger. 2005 Aug 29. 167(35):3308-10. [Medline].

Frost L, Vestergaard P, Mosekilde L. Hyperthyroidism and risk of atrial fibrillation or flutter–secondary publication. A population-based study. Ugeskr Laeger. 2005 Aug 29. 167(35):3305-7. [Medline].

Movahed MR, Hashemzadeh M, Jamal MM. Diabetes mellitus is a strong, independent risk for atrial fibrillation and flutter in addition to other cardiovascular disease. Int J Cardiol. 2005 Dec 7. 105(3):315-8. [Medline].

Earing MG, Cetta F, Driscoll DJ. Long-term results of the Fontan operation for double-inlet left ventricle. Am J Cardiol. 2005 Jul 15. 96(2):291-8. [Medline].

Balaji S, Daga A, Bradley DJ, et al. An international multicenter study comparing arrhythmia prevalence between the intracardiac lateral tunnel and the extracardiac conduit type of Fontan operations. J Thorac Cardiovasc Surg. 2014 Aug. 148(2):576-81. [Medline].

Krapp M, Kohl T, Simpson JM. Review of diagnosis, treatment, and outcome of fetal atrial flutter compared with supraventricular tachycardia. Heart. 2003 Aug. 89(8):913-7. [Medline].

Southall DP, Johnson AM, Shinebourne EA, Johnston PG, Vulliamy DG. Frequency and outcome of disorders of cardiac rhythm and conduction in a population of newborn infants. Pediatrics. 1981 Jul. 68(1):58-66. [Medline].

Silversides CK, Harris L, Haberer K. Recurrence rates of arrhythmias during pregnancy in women with previous tachyarrhythmia and impact on fetal and neonatal outcomes. Am J Cardiol. 2006 Apr 15. 97(8):1206-12. [Medline].

Liberman L, Pass RH, Starc TJ. Optimal surface electrocardiogram lead for identification of the mechanism of supraventricular tachycardia in children. Pediatr Emerg Care. 2008 Jan. 24(1):28-30. [Medline].

Lin JH, Kean AC, Cordes TM. The risk of thromboembolic complications in Fontan patients with atrial flutter/fibrillation treated with electrical cardioversion. Pediatr Cardiol. 2016 Oct. 37(7):1351-60. [Medline].

Vadmann H, Nielsen PB, Hjortshoj SP, et al. Atrial flutter and thromboembolic risk: a systematic review. Heart. 2015 Sep. 101(18):1446-55. [Medline].

Liberman L, Hordof AJ, Altmann K, Pass RH. Low energy biphasic waveform cardioversion of atrial arrhythmias in pediatric patients and young adults. Pacing Clin Electrophysiol. 2006 Dec. 29(12):1383-6. [Medline].

Crochelet AS, Jacquemart C, Massin M. [Repeated electrical cardioversions and amiodarone for recurrent neonatal atrial flutter]. Arch Pediatr. 2015 Oct. 22(10):1032-4. [Medline].

Stulak JM, Dearani JA, Puga FJ. Right-sided Maze procedure for atrial tachyarrhythmias in congenital heart disease. Ann Thorac Surg. 2006 May. 81(5):1780-4; discussion 1784-5. [Medline].

[Guideline] Page RL, Joglar JA, Caldwell MA, et al. 2015 ACC/AHA/HRS guideline for the management of adult patients with supraventricular tachycardia: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Circulation. 2016 Apr 5. 133(14):e471-505. [Medline]. [Full Text].

Naccarelli GV, Wolbrette DL, Levin V, et al. Safety and efficacy of dronedarone in the treatment of atrial fibrillation/flutter. Clin Med Insights Cardiol. 2011. 5:103-19. [Medline]. [Full Text].

Ekiz A, Kaya B, Bornaun H, et al. Flecainide as first-line treatment for fetal supraventricular tachycardia. J Matern Fetal Neonatal Med. 2017 Feb 14. 1-6. [Medline].

Li X, Zhang Y, Liu H, Jiang H, Ge H, Zhang Y. Efficacy of intravenous sotalol for treatment of incessant tachyarrhythmias in children. Am J Cardiol. 2017 Feb 10. [Medline].

Oudijk MA, Ruskamp JM, Ververs FF, et al. Treatment of fetal tachycardia with sotalol: transplacental pharmacokinetics and pharmacodynamics. J Am Coll Cardiol. 2003 Aug 20. 42(4):765-70. [Medline].

Rebelo M, Macedo AJ, Nogueira G, Trigo C, Kaku S. Sotalol in the treatment of fetal tachyarrhythmia. Rev Port Cardiol. 2006 May. 25(5):477-81. [Medline].

Ekiz A, Kaya B, Bornaun H, et al. Flecainide as first-line treatment for fetal supraventricular tachycardia. J Matern Fetal Neonatal Med. 2018 Feb. 31(4):407-12. [Medline].

Sumitomo N, Horigome H, Miura M, et al, for the Heartful Investigators. Study design for control of HEART rate in inFant and child tachyarrhythmia with heart failure Using Landiolol (HEARTFUL): A prospective, multicenter, uncontrolled clinical trial. J Cardiol. 2017 Sep. 70(3):232-7. [Medline].

von Alvensleben JC, LaPage MJ, Caruthers R, Bradley DJ. Nadolol for treatment of supraventricular tachycardia in infants and young children. Pediatr Cardiol. 2017 Mar. 38(3):525-30. [Medline].

Lin JH, Kean AC, Cordes TM. The risk of thromboembolic complications in Fontan patients with atrial flutter/fibrillation treated with electrical cardioversion. Pediatr Cardiol. 2016 Oct. 37(7):1351-60. [Medline].

Yilmaz-Semerci S, Bornaun H, Kurnaz D, et al. Neonatal atrial flutter: Three cases and review of the literature. Turk J Pediatr. 2018. 60(3):306-9. [Medline]. [Full Text].

Low S, Kiper C, Armstrong A, Cua CL. Echocardiographic diagnosis of atrial flutter in a neonate. Echocardiography. 2018 Sep. 35(9):1439-41. [Medline].

M Silvana Horenstein, MD Assistant Professor, Department of Pediatrics, University of Texas Medical School at Houston; Medical Doctor Consultant, Legacy Department, Best Doctors, Inc

M Silvana Horenstein, MD is a member of the following medical societies: American Academy of Pediatrics, American College of Cardiology, American Medical Association

Disclosure: Nothing to disclose.

Robert Murray Hamilton, MD, MSc, FRCPC Electrophysiologist, Senior Associate Scientist, Physiology and Experimental Medicine, Labatt Family Heart Centre; Professor, Department of Pediatrics, University of Toronto Faculty of Medicine

Robert Murray Hamilton, MD, MSc, FRCPC is a member of the following medical societies: American Heart Association, Canadian Medical Association, Ontario Medical Association, Royal College of Physicians and Surgeons of Canada, Canadian Medical Protective Association, Heart Rhythm Society, Canadian Cardiovascular Society, Cardiac Electrophysiology Society, Pediatric and Congenital Electrophysiology Society, Society for Pediatric Research

Disclosure: Nothing to disclose.

Syamasundar Rao Patnana, MD Professor of Pediatrics and Medicine, Division of Cardiology, Emeritus Chief of Pediatric Cardiology, University of Texas Medical School at Houston and Children’s Memorial Hermann Hospital

Syamasundar Rao Patnana, MD is a member of the following medical societies: American Academy of Pediatrics, American Pediatric Society, American College of Cardiology, American Heart Association, Society for Cardiovascular Angiography and Interventions, Society for Pediatric Research

Disclosure: Nothing to disclose.

Alvin J Chin, MD Professor of Pediatrics, University of Pennsylvania School of Medicine; Attending Physician, Cardiology Division, Children’s Hospital of Philadelphia

Alvin J Chin, MD, is a member of the following medical societies: American Association for the Advancement of Science, American Heart Association, and Society for Developmental Biology

Disclosure: Nothing to disclose.

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

Pediatric Atrial Flutter

Research & References of Pediatric Atrial Flutter|A&C Accounting And Tax Services
Source