Organic Phosphorous Compound and Carbamate Toxicity

No Results

No Results


[1, 2] OPC nerve agents may also be used in the military setting or in terrorist attacks such as the use of sarin in the 1995 Tokyo subway attacks. [3] Carbamates, such as physostigmine and neostigmine, are commonly used to treat diseases such as glaucoma and myasthenia gravis.

Although OPC and carbamates are structurally distinct, they have similar clinical manifestations and generally the same management. Although most patients with OPC and carbamate poisoning have a good prognosis, severe poisoning is potentially lethal. Early diagnosis and initiation of treatment are important. The ED physician has access to a number of therapeutic options that can decrease morbidity and mortality (see Treatment and Medication).

OPCs and carbamates bind to an active site of acetylcholinesterase (AChE) and inhibit the functionality of this enzyme by means of steric inhibition. The main purpose of AChE is to hydrolyze acetylcholine (ACh) to choline and acetic acid. Therefore, the inhibition of AChE causes an excess of ACh in synapses and neuromuscular junctions, resulting in muscarinic and nicotinic symptoms and signs.

Excess ACh in the synapse can lead to 3 sets of symptoms and signs.

First, accumulation of ACh at postganglionic parasympathetic muscarinic acetylcholine receptors leads to parasympathetic activity of smooth muscle in the lungs, GI tract, heart, eyes, bladder, and secretory glands and increased activity in postganglionic sympathetic receptors for sweat glands. This results in the symptoms and signs that can be remembered with the mnemonic SLUDGE/BBB (see Presentation/Physical Examination).

Second, excessive ACh at nicotinic acetylcholine receptors in preganglionic sympathetic synapses and at motor end plates may cause mydriasis, tachycardia, weakness, hypertension, and fasciculations that can be remembered with the mnemonic “days of the week MTWHF”. Third, as OPs cross the blood-brain barrier, they may cause seizures, respiratory depression, and CNS depression for reasons not completely understood.

OPCs and carbamates also bind to erythrocyte cholinesterase (also known as red blood cell [RBC] cholinesterase) on RBCs and plasma cholinesterase (also known as pseudocholinesterase, serum cholinesterase, or butyrylcholinesterase) in the serum. This binding seems to have only minimal clinical effects but is useful in confirmatory diagnostic studies.

The main difference in the mechanisms of action between OPCs and carbamates is that carbamates spontaneously hydrolyze from the AChE site within 24 hours, whereas OPCs undergo aging. Aging occurs when the phosphorylated AChE nonenzymatically loses an alkyl side chain, becoming irreversibly inactivated. Carbamates, however, reversibly bind to the active site and do not undergo aging.

United States

In the United States, more than 18,000 products are licensed for use, and each year more than 2 billion pounds of pesticides are applied to crops, homes, schools, parks, and forests. [4] Occupational exposure is known to result in an annual incidence of 18 cases of pesticide-related illness reported for every 100,000 full-time workers in the United States. [5] In 2016, 2484 cases of OPC exposure, 1404 cases of carbamate exposure, and 47 cases of combined OPC and carbamate exposure were reported to Poison Control Centers in the United States. One OPC-related death and two carbamate-related deaths were reported that year. [6]


Because of the increased use and availability of pesticides (especially in developing countries), the incidence of OPC and carbamate poisoning is high. In China alone, pesticide poisoning, mainly with OPCs, cause an estimated 170,000 deaths per year. Virtually all of these are the result of deliberate self-poisoning by ingestion. [7]

Many OPC and carbamate exposures are mild, and symptoms resolve rapidly. The severity of poisoning is largely due to a number of factors, including the type of agent, the amount and route of exposure, and the time to initial treatment. The most common cause of mortality in OPC and carbamate poisoning is respiratory failure; however, death is rare, occurring in 0.04-1% of typical pesticide poisonings. [8]

No racial predilection exists. Men have an increased incidence because of increased work-related exposure and increased suicidal attempts with OP and carbamate compounds.

Children have an increased incidence of unintentional exposure at home. One retrospective study revealed a difference in clinical presentation in children with OPC and carbamate poisoning compared with adults. In pediatric patients, CNS depression and severe hypotonia predominated, whereas muscarinic symptoms were infrequent. [9]

Zhao X, Wu C, Wang Y, Cang T, Chen L, Yu R, et al. Assessment of toxicity risk of insecticides used in rice ecosystem on Trichogramma japonicum, an egg parasitoid of rice lepidopterans. J Econ Entomol. 2012 Feb. 105(1):92-101. [Medline].

Chen SW, Gao YY, Zhou NN, Liu J, Huang WT, Hui L, et al. Carbamates of 4′-demethyl-4-deoxypodophyllotoxin: synthesis, cytotoxicity and cell cycle effects. Bioorg Med Chem Lett. 2011 Dec 15. 21(24):7355-8. [Medline].

Masson P. of and perspectives on therapeutic approaches to nerve agent poisoning. Toxicol Lett. 2011 Sep 25. 206(1):5-13. [Medline].

Grube A, Donaldson D, Kiely T, Wu L. Pesticides Industry Sales and Usage. United States Environmental Protection Agency. Available at February 2011; Accessed: September 6, 2018.

Calvert GM, Beckman J, Prado JB, Bojes H, Schwartz A, Mulay P, et al. Acute Occupational Pesticide-Related Illness and Injury -United States, 2007-2011. MMWR Morb Mortal Wkly Rep. 2016 Oct 14. 63 (55):11-16. [Medline]. [Full Text].

Gummin DD, Mowry JB, Spyker DA, Brooks DE, Fraser MO, Banner W. 2016 Annual Report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 34th Annual Report. Clin Toxicol (Phila). 2017 Dec. 55 (10):1072-1252. [Medline]. [Full Text].

Eddleston M, Phillips MR. Self poisoning with pesticides. BMJ. 2004 Jan 3. 328(7430):42-4. [Medline].

Tsao TC, Juang YC, Lan RS, Shieh WB, Lee CH. Respiratory failure of acute organophosphate and carbamate poisoning. . 1990 Sep. 98(3):631-6. [Medline].

Lifshitz M, Shahak E, Sofer S. Carbamate and organophosphate poisoning in young children. Pediatr Emerg Care. 1999 Apr. 15(2):102-3. [Medline].

Okumura T, Takasu N, Ishimatsu S, Miyanoki S, Mitsuhashi A, Kumada K, et al. Report on 640 victims of the Tokyo subway sarin attack. Ann Emerg Med. 1996 Aug. 28(2):129-35. [Medline].

Eddleston M, Karalliedde L, Buckley N, Fernando R, Hutchinson G, Isbister G, et al. Pesticide poisoning in the developing world–a minimum pesticides list. Lancet. 2002 Oct 12. 360(9340):1163-7. [Medline].

Quandt SA, Pope CN, Chen H, Summers P, Arcury TA. Longitudinal Assessment of Blood Cholinesterase Activities Over 2 Consecutive Years Among Latino Nonfarmworkers and Pesticide-Exposed Farmworkers in North Carolina. J Occup Environ Med. 2015 Aug. 57 (8):851-7. [Medline]. [Full Text].

Greenaway C, Orr P. A foodborne outbreak causing a cholinergic syndrome. J Emerg Med. 1996 May-Jun. 14(3):339-44. [Medline].

Aaron C. Ford: Clinical Toxicology. St Louis, MO: MD Consult; 2001. 818-28.

Worek F, Koller M, Thiermann H, Szinicz L. Diagnostic aspects of organophosphate poisoning. Toxicology. 2005 Oct 30. 214(3):182-9. [Medline].

Kiss Z, Fazekas T. Arrhythmias in organophosphate poisonings. Acta Cardiol. 1979. 34(5):323-30. [Medline].

Yurumez Y, Yavuz Y, Saglam H, Durukan P, Ozkan S, Akdur O, et al. Electrocardiographic findings of acute organophosphate poisoning. J Emerg Med. Jan 2009. 36(1):39-42. [Medline].

Eyer P. The role of oximes in the management of organophosphorus pesticide poisoning. Toxicol Rev. 2003. 22(3):165-90. [Medline].

Butera R, Locatelli C, Barretta S. Secondary exposure to malathion in emergency department healthcare workers. Clin Toxicol. 2002. 40:386.

Stacey R, Morfey D, Payne S. Secondary contamination in organophosphate poisoning: analysis of an incident. QJM. 2004 Feb. 97(2):75-80. [Medline].

Koksal N, Buyukbese MA, Guven A, Cetinkaya A, Hasanoglu HC. Organophosphate intoxication as a consequence of mouth-to-mouth breathing from an affected case. . 2002 Aug. 122(2):740-1. [Medline]. [Full Text].

Geller RJ, Singleton KL, Tarantino ML, Drenzek CL, Toomey KE. Nosocomial poisoning associated with emergency department treatment of organophosphate toxicity–Georgia, 2000. J Toxicol Clin Toxicol. 2001. 39(1):109-11. [Medline].

Little M, Murray L,. Consensus statement: risk of nosocomial organophosphate poisoning in emergency departments. Emerg Med Australas. 2004 Oct-Dec. 16(5-6):456-8. [Medline].

Li Y, Tse ML, Gawarammana I, Buckley N, and Eddleston M. Systematic review of controlled clinical trials of gastric lavage in acute organophosphorus pesticide poisoning. Clin Toxicol. 2009 Mar. 47(3):179-92. [Medline].

LeBlanc FN, Benson BE, Gilg AD. A severe organophosphate poisoning requiring the use of an atropine drip. J Toxicol Clin Toxicol. 1986. 24(1):69-76. [Medline].

Worek F, Kirchner T, Backer M, Szinicz L. Reactivation by various oximes of human erythrocyte acetylcholinesterase inhibited by different organophosphorus compounds. Arch Toxicol. 1996. 70(8):497-503. [Medline].

Buckley NA, Eddleston M, Szinicz L. Oximes for acute organophosphate pesticide poisoning. Cochrane Database Syst Rev. 2005. (1):CD005085. [Medline]. [Full Text].

Johnson MK, Jacobsen D, Meredith TJ. Evaluation of antidotes for poisoning in organophorus pesticides. Emerg Med. 2000. 12(1):22-37.

Willems JL, De Bisschop HC, Verstraete AG, Declerck C, Christiaens Y, Vanscheeuwyck P, et al. Cholinesterase reactivation in organophosphorus poisoned patients depends on the plasma concentrations of the oxime pralidoxime methylsulphate and of the organophosphate. Arch Toxicol. 1993. 67(2):79-84. [Medline].

Thiermann H, Szinicz L, Eyer F, Worek F, Eyer P, Felgenhauer N, et al. Modern strategies in therapy of organophosphate poisoning. Toxicol Lett. 1999 Jun 30. 107(1-3):233-9. [Medline].

Worek F, Backer M, Thiermann H, Szinicz L, Mast U, Klimmek R, et al. Reappraisal of indications and limitations of oxime therapy in organophosphate poisoning. Hum Exp Toxicol. 1997 Aug. 16(8):466-72. [Medline].

Thompson DF, Thompson GD, Greenwood RB, Trammel HL. Therapeutic dosing of pralidoxime chloride. Drug Intell Clin Pharm. 1987 Jul-Aug. 21(7-8):590-3. [Medline].

Thiermann H, Mast U, Klimmek R, Eyer P, Hibler A, Pfab R, et al. Cholinesterase status, pharmacokinetics and laboratory findings during obidoxime therapy in organophosphate poisoned patients. Hum Exp Toxicol. 1997 Aug. 16(8):473-80. [Medline].

Johnson S, Peter JV, Thomas K, Jeyaseelan L, Cherian AM. Evaluation of two treatment regimens of pralidoxime (1 gm single bolus dose vs 12 gm infusion) in the management of organophosphorus poisoning. J Assoc Physicians India. 1996 Aug. 44(8):529-31. [Medline].

Cherian AM, Jeyaseelan L, Peter JV. Effectiveness of 2-PAM (pralidoxime) in the treatment of organophosphorus poisoning (OPP): a randomised double blind placebo controlled trial. 1997.

Pawar KS, Bhoite RR, Pillay CP, Chavan SC, Malshikare DS, Garad SG. Continuous pralidoxime infusion versus repeated bolus injection to treat organophosphorus pesticide poisoning: a randomised controlled trial. Lancet. Dec 2006. 368(9553):2136-2141. [Medline].

Sundwall A. Minimum concentrations of N-methylpyridinium-2-aldoxime methane sulphonate (P2S) which reverse neuromuscular block. Biochem Pharmacol. 1961 Dec. 8:413-7. [Medline].

Pajoumand A, Shadnia S, Rezaie A, Abdi M, Abdollahi M. Benefits of magnesium sulfate in the management of acute human poisoning by organophosphorus insecticides. Hum Exp Toxicol. 2004 Dec. 23(12):565-9. [Medline].

Basher A, Rahman SH, Ghose A, Arif SM, Faiz MA, Dawson AH. Phase II study of magnesium sulfate in acute organophosphate pesticide poisoning. Clin Toxicol (Phila). 2013 Jan. 51 (1):35-40. [Medline].

Güven M, Sungur M, Eser B, Sari I, Altuntas F. The effects of fresh frozen plasma on cholinesterase levels and outcomes in patients with organophosphate poisoning. J Toxicol Clin Toxicol. 2004. 42(5):617-23. [Medline].

Senanayake N, Johnson MK. Acute polyneuropathy after poisoning by a new organophosphate insecticide. N Engl J Med. 1982 Jan 21. 306(3):155-7. [Medline].

Indira M, Andrews MA, Rakesh TP. Incidence, predictors, and outcome of intermediate syndrome in cholinergic insecticide poisoning: a prospective observational cohort study. Clin Toxicol (Phila). 2013 Nov. 51 (9):838-45. [Medline].

Jayawardane P, Dawson AH, Weerasinghe V, Karalliedde L, Buckley NA, Senanayake N. The spectrum of intermediate syndrome following acute organophosphate poisoning: a prospective cohort study from Sri Lanka. PLoS Med. Jul 2008. 5(7):e147. [Medline].

De Bleecker J, Van den Neucker K, Colardyn F. Intermediate syndrome in organophosphorus poisoning: a prospective study. Crit Care Med. 1993 Nov. 21(11):1706-11. [Medline].

De Bleecker JL. The intermediate syndrome in organophosphate poisoning: an overview of experimental and clinical observations. J Toxicol Clin Toxicol. 1995. 33(6):683-6. [Medline].

Sahin I, Onbasi K, Sahin H, Karakaya C, Ustun Y, Noyan T. The prevalence of pancreatitis in organophosphate poisonings. Hum Exp Toxicol. 2002 Apr. 21(4):175-7. [Medline].

Harputluoglu MM, Kantarceken B, Karincaoglu M, Aladag M, Yildiz R, Ates M, et al. Acute pancreatitis: an obscure complication of organophosphate intoxication. Hum Exp Toxicol. 2003 Jun. 22(6):341-3. [Medline].

Anand S, Singh S, Nahar Saikia U, Bhalla A, Paul Sharma Y, Singh D. Cardiac abnormalities in acute organophosphate poisoning. Clin Toxicol (Phila). Mar 2009. 47(3):230-5. [Medline].

Munidasa UA, Gawarammana IB, Kularatne SA, Kumarasiri PV, Goonasekera CD. Survival pattern in patients with acute organophosphate poisoning receiving . J Toxicol Clin Toxicol. 2004. 42(4):343-7. [Medline].

Daniel K Nishijima, MD, MAS Assistant Professor of Emergency Medicine, Associate Research Director, Department of Emergency Medicine, University of California, Davis, School of Medicine

Daniel K Nishijima, MD, MAS is a member of the following medical societies: American Academy of Emergency Medicine, American College of Emergency Physicians, Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Sage W Wiener, MD Assistant Professor, Department of Emergency Medicine, State University of New York Downstate Medical Center; Director of Medical Toxicology, Department of Emergency Medicine, Kings County Hospital Center

Sage W Wiener, MD is a member of the following medical societies: American Academy of Clinical Toxicology, American Academy of Emergency Medicine, American College of Medical Toxicology, Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

John T VanDeVoort, PharmD Regional Director of Pharmacy, Sacred Heart and St Joseph’s Hospitals

John T VanDeVoort, PharmD is a member of the following medical societies: American Society of Health-System Pharmacists

Disclosure: Nothing to disclose.

Fred Harchelroad, MD, FACMT, FAAEM, FACEP Attending Physician in Emergency Medicine and Medical Toxicology, Excela Health System

Fred Harchelroad, MD, FACMT, FAAEM, FACEP is a member of the following medical societies: American College of Medical Toxicology

Disclosure: Nothing to disclose.

David Vearrier, MD, MPH Associate Professor, Medical Toxicology Fellowship Director, Department of Emergency Medicine, Drexel University College of Medicine

David Vearrier, MD, MPH is a member of the following medical societies: American Academy of Clinical Toxicology, American Academy of Emergency Medicine, American College of Medical Toxicology, American College of Occupational and Environmental Medicine

Disclosure: Nothing to disclose.

Dana A Stearns, MD Assistant Director of Undergraduate Education, Department of Emergency Medicine, Massachusetts General Hospital; Associate Director, Undergraduate Clerkship in Surgery, Massachusetts General Hospital/Harvard Medical School; Assistant Professor of Surgery, Harvard Medical School

Dana A Stearns, MD is a member of the following medical societies: American College of Emergency Physicians

Disclosure: Nothing to disclose.

Organic Phosphorous Compound and Carbamate Toxicity

Research & References of Organic Phosphorous Compound and Carbamate Toxicity|A&C Accounting And Tax Services