Attractive People Get Unfair Advantages at Work. AI Can Help.

One reason for the widespread interest in AI is that it has the potential to reduce the degree of bias underpinning human decisions. For example, meta-analytic studies have long highlighted the pervasive nature of bias in hiring and recruitment. But one of the most prominent biases is hardly ever discussed or acknowledged, namely the “beauty bias” — also known as “lookism”. The existence of a beauty premium in the labor market is well-documented. Physically attractive individuals are more likely to be interviewed for jobs and hired, they are more likely to advance rapidly in their careers through frequent promotions, and they earn higher wages than unattractive individuals. Common manifestations of appearance-based discrimination may include bias against obese, oddly-dressed, or tattooed candidates, or any people who don’t fit a society’s dominant aesthetic criteria. AI can be a powerful tool in helping to detect and expose this bias.

One reason for the widespread interest in AI is that it has the potential to reduce the degree of bias underpinning human decisions. For example, meta-analytic studies have long highlighted the pervasive nature of bias in hiring and recruitment.

Even in the rich and liberal world, there are many biases at play in the workplace, which account for the unmeritocratic or unfair advantage that some groups have over others, irrespective of their actual talent or potential: sexism, racism, and ageism, to name just a few.

But one of the most prominent biases is hardly ever discussed or acknowledged, namely the beauty bias — also known as “lookism.” Indeed, the existence of a beauty premium in the labor market is well-documented. As a comprehensive academic review summarized: “Physically attractive individuals are more likely to be interviewed for jobs and hired, they are more likely to advance rapidly in their careers through frequent promotions, and they earn higher wages than unattractive individuals.” Common manifestations of appearance-based discrimination may include bias against obese, oddly-dressed, or tattooed candidates, or any people who don’t fit a society’s dominant aesthetic criteria.

Broadly speaking, the beauty bias concerns the favorable treatment that individuals receive when they are deemed more attractive, regardless of whether this happens consciously or unconsciously — and of course few individuals, let alone employers, actually admit to preferring to work with others on the basis of their higher levels of attractiveness. Naturally, there are some exceptions. For instance, in order to join the Chinese Navy, “good looks” are an official requirement, apparently so they can represent the nation with the best image. And although Abercrombie & Fitch was pushed into a $50-million settlement for hiring WASPY-looking retail assistants, it was not banned from imposing attractiveness standards in its recruitment policies, so long as it recruited diverse — but good looking — candidates.

Here’s the good news: Identifying this bias is surprisingly simple. This means that any employer interested in eliminating handicaps against less attractive people should be able to detect this bias, and evaluate the efficacy of any intervention. Now the bad news: you are unlikely to achieve this unless you replace human intuition with data — this is where AI can potentially help, if approached responsibly. So how can we tackle the attractiveness bias?

First, you can measure attractiveness, which is typically a function of consensual ratings of physical appearance. Imagine you ask 10 people to rate 100 people on physical appearance or attractiveness. Although attractiveness is not objective, which is why there are always disagreements between people rating the same person, it is also not entirely subjective, so most people will tend to agree on whether someone is more or less attractive, for instance by using a 1-10 point scale, and not just when they belong to the same culture.

Next, you can correlate this score with a range of success indicators, from interview ratings, to job performance ratings, to promotion or salary data. Given that attractiveness is rarely a formal criterion for picking one person over another — except, of course, in the dating world — there are obvious reasons for evaluating whether and why people’s attractiveness scores may correlate with any objective indicator of career success. Here’s where AI can help: as a diagnostic tool to predict someone’s likelihood of being deemed more effective in the business based on their perceived attractiveness. A significant body of research suggests that a person’s attractiveness level is far more predictive of a range of success outcomes than one would hope if we want to live in a fair and unbiased world.

So, what does the science actually tell us?

A pro-attractiveness bias already exists in education, with studies showing that physically attractive students tend to obtain higher grades at university, partly because they are deemed more conscientious and intelligent, even when they are not. Furthermore, attractiveness already helps students get into universities in the first place, by eliciting more favorable evaluations during college admissions interviews. This is consistent with the broader finding of a very well-established “halo” effect whereby attractive people are generally perceived as being more sociable, healthy, successful, honest, and talented. In fact, meta-analytic studies suggest that even children are assumed to be smarter, more honest, and driven, when they are deemed more attractive — and children make the same type of inferences when they evaluate more or less attractive adults.

Unsurprisingly, the beauty bias transfers into the workplace, with scientific studies showing that less attractive individuals are more likely to get fired, even though they are also less likely to be hired in the first place. For example, in an experimental study, researchers sent 11,000 CVs to various job openings, including identical CVs accompanied by candidate photographs of different levels of attractiveness. Attractive women and men were much more likely to get a call back for an interview than unattractive (or no-photograph) candidates were.

There is also a well-established association between attractiveness and long-term income, with above-average beauty translating into 10% to 15% higher salaries than below-average beauty. In the U.S., this beauty premium is similar to the one found for race or gender. Note that this effect is found even among highly successful individuals. For instance, attractiveness ratings of Fortune 500 executives predicted their companies’ profits.

As the clichéd phrase notes, correlation does not mean causation, but let’s not forget that correlations do have causes. One delicate issue is the possibility — supported by much evolutionary psychology research — that the cause of the correlation between beauty and career success is not (only) prejudice or bias, but (also) actual talent. In other words, could it be that, at least in part, attractive people do better in life because they actually possess more adaptive traits, such as intelligence or talent?

At times, this proposition is hard to test, not least because of the common absence of objective performance data that is not conflated with subjective preference. Consider that most peoples’ performance is measured simply by a single subjective rating provided by their direct line manager or boss. If employers lack objective data to distill managers’ bias and subjective preferences from their ratings of their employees’ performance, how can they quantify an employees’ exact contribution to the firm? It is for this very reason that attempts to use AI to measure attractiveness have exposed racial preferences around what is found more or less attractive in a given culture. If we teach AI to imitate human preferences, it will not just replicate, but also augment and exacerbate human biases.

Furthermore, at times it is hard to determine whether appearance should be treated as a bias factor or job-relevant trait: especially when employees’ performance depends on the perceptions customers or clients have of them. As a Glassdoor report noted, “there are many industries and businesses that would suffer immeasurably if we were to legislate out beauty bias.” In support of this idea, evolutionary scientists report positive correlations between attractiveness ratings on one hand, and scores on socially desirable personality traits, such as emotional stability, extraversion, and ambition on the other. For example, physical attractiveness — just like psychological attractiveness (EQ or likability) — contributes to better sales and fund-raising potential, so is it sensible to stop employers from hiring more attractive salespeople or fundraisers?

Perhaps, because the alternative is to discriminate against less attractive individuals, which will include people from minority groups who don’t fit the dominant “beauty norms.” But when employers simply pretend to ignore attractiveness, focusing on candidates’ past performance or interview performance, and interpreting these data as objective or bias-free, there is no guarantee that less attractive candidates won’t be handicapped. It is no different from pretending to ignore race or social class, while selecting on academic credentials, which are actually conflated with race and social class.

Clearly, then, there’s an unfair advantage to being deemed more attractive, and an unfair handicap to being deemed less attractive. Although employers can mitigate this bias by eliminating appearance data from their hiring practices — by not only using AI, but also focusing on science-based assessments, past performance, and resume data — such measures will not be sufficient to eliminate bias, since they are also influenced by historical or past bias: if attractive people are evaluated more favorably in the past, they will show up as high performers in their CVs, etc. Still, that is no reason to avoid the issue or perpetuate the beauty bias at work.

Importantly, AI can be a powerful tool to detect and expose the degree of bias underlying human ratings of potential and performance. If programmed correctly, AI could become an objective way to measure what we don’t always see ourselves. For example, if you’re trying to lose weight, a scale can help keep you honest.  If you’re trying to exercise more, a fitness tracker can help monitor your progress.  And, given the right inputs, AI can help us overcome our conscious and unconscious biases in hiring.

Tomas Chamorro-Premuzic is the Chief Talent Scientist at ManpowerGroup, a professor of business psychology at University College London and at Columbia University, and an associate at Harvard’s Entrepreneurial Finance Lab. He is the author of Why Do So Many Incompetent Men Become Leaders? (and How to Fix It), upon which his TEDx talk was based. Find him on Twitter: @drtcp or at www.drtomas.com. 

 

Attractive People Get Unfair Advantages at Work. AI Can Help.

Research & References of Attractive People Get Unfair Advantages at Work. AI Can Help.|A&C Accounting And Tax Services
Source

error: Content is protected !!